Some Results on Majorization of Matrices

نویسندگان

چکیده

For two n×m real matrices X and Y, is said to be majorized by written as X≺Y if X=SY for some doubly stochastic matrix of order n. Matrix majorization has several applications in statistics, wireless communications other fields science engineering. Hwang Park obtained the necessary sufficient conditions X,Y satisfy cases where rank Y=n−1 Y=n. In this paper, we obtain Y=n−2 general Y=n−k, 1≤k≤n−1. We Y with on Y. The there S∈Ωm such that X=YS. introduced a new concept column paper. A denoted X⪯cY, exists S X=SY. give characterizations (0,1) matrices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

متن کامل

Some Results on Sparse Matrices*

A comparison in the context of sparse matrices is made between the Product Form of the Inverse PFI (a form of Gauss-Jordan elimination) and the Elimination Form of the Inverse EFI (a form of Gaussian elimination). The precise relation of the elements of these two forms of the inverse is given in terms of the nontrivial elements of the three matrices L, U, U~l associated with the triangular fact...

متن کامل

Some results on higher numerical ranges and radii of quaternion matrices

‎Let $n$ and $k$ be two positive integers‎, ‎$kleq n$ and $A$ be an $n$-square quaternion matrix‎. ‎In this paper‎, ‎some results on the $k-$numerical range of $A$ are investigated‎. ‎Moreover‎, ‎the notions of $k$-numerical radius‎, ‎right $k$-spectral radius and $k$-norm of $A$ are introduced‎, ‎and some of their algebraic properties are studied‎.

متن کامل

Some results on random circulant matrices

This paper considers random (non-Hermitian) circulant matrices, and proves several results analogous to recent theorems on non-Hermitian random matrices with independent entries. In particular, the limiting spectral distribution of a random circulant matrix is shown to be complex normal, and bounds are given for the probability that a circulant sign matrix is singular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2022

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms11040146